If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+14y-15=4
We move all terms to the left:
y^2+14y-15-(4)=0
We add all the numbers together, and all the variables
y^2+14y-19=0
a = 1; b = 14; c = -19;
Δ = b2-4ac
Δ = 142-4·1·(-19)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{17}}{2*1}=\frac{-14-4\sqrt{17}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{17}}{2*1}=\frac{-14+4\sqrt{17}}{2} $
| 2+2(x+8)=2-(x-2) | | 30-5x=-6 | | 2^(9x)=144 | | 4x^2-4^8=0 | | 8=-7+x/3+5 | | 5r+4-1=8r-3r+2 | | -3x-20+8x+12=37 | | 13x-132=36+5x | | 32=w+-163 | | 1/2b=-2/4 | | b^2-8b+13=17 | | 60+4p+2p=180 | | 7x+4(-3x+6)=-7x+38 | | z=6z=6 | | -8(x+4)=120 | | 21x=23x-15=72 | | 23=3/4r | | 670=t+-93 | | -164-5x=-11x+58 | | 3z+9=180 | | 90+w+30+4w=180 | | 26=r-791 | | -2x+104=-4(2x-149) | | 8x+16=10x-9 | | m^2+18m+76=0 | | -8x=56 | | 8x=56 | | 1/2x+5=3/2x-61 | | 4t-15=31 | | −3(x+2)−4(2x−1)=2(−2x+4) | | -2(x-12)=4x-120 | | 777=d+-208 |